A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis.
نویسندگان
چکیده
The redifferentiation, proliferation, and hyaline-specific extracellular matrix (ECM) protein synthesis of chondrocytes cultured in a polycaprolactone (PCL) scaffold were analyzed. Gene expression of the type II collagen and aggrecan was assessed by real-time PCR in cells from PCL scaffolds, monolayer, and pellet cultures. The proliferative activity was assessed using Ki-67 immunodetection, and the chondrocytic differentiation was evaluated using S-100 immunodetection. The synthesis and deposition into scaffold pores of type II collagen and glycosaminoglycan were analyzed by immunohistochemistry and Alcian blue staining, respectively. All parameters were assessed throughout 28 days of cultures maintained in either fetal bovine serum-containing medium (FCM) or Insulin-Transferrin-Selenium-containing medium (ICM). Expression of the type II collagen gene was lower in FCM cultures than in ICM cultures for all culture systems (p < 0.05). Moreover, PCL scaffolds cultured in ICM were able to induce collagen gene expression more efficiently than pellet and monolayer cultures. Aggrecan gene expression did not vary significantly between mediums and three-dimensional system cultures, but in ICM cultures, the monolayer cultures had significantly higher levels of aggrecan gene expression than did either the PCL or pellet cultures. Chondrocytes cultured in PCL scaffolds or pellets with FCM did not proliferate to a great extent but did maintain their differentiated phenotype for 28 days. Levels of cartilage ECM protein synthesis and deposition into the scaffold pores were similar among PCL and pellet cultures grown in FCM and in ICM. In conclusion, chondrocytes seeded into PCL scaffolds, cultured in ICM, efficiently maintained their differentiated phenotype and were able to synthesize cartilage-specific ECM proteins.
منابع مشابه
RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation
As in humans, osteoarthritis (OA) causes considerable economic loss to the equine industry. New hopes for cartilage repair have emerged with the matrix-associated autologous chondrocyte implantation (MACI). Nevertheless, its limitation is due to the dedifferentiation occurring during the chondrocyte amplification phase, leading to the loss of its capacity to produce a hyaline extracellular matr...
متن کاملStudy of Human Chondrocyte Redifferntiation Capacity in Three-Dimensional Hydrogel Culture
Objective(s) Articular cartilage tissue defects cannot be repaired by the proliferation of resident chondrocytes. Autologous chondrocyte transplantation (ACT) is a relatively new therapeutic approach to cover full thickness articular cartilage defects by in vitro grown chondrocytes from the joint of a patient. Therefore, we investigated the redifferentiation capability of human chondrocytes ma...
متن کاملPorous Chitosan Scaffolds with Embedded Hyaluronic Acid/Chitosan/Plasmid-DNA Nanoparticles Encoding TGF-β1 Induce DNA Controlled Release, Transfected Chondrocytes, and Promoted Cell Proliferation
Cartilage defects resulting from traumatic injury or degenerative diseases have very limited spontaneous healing ability. Recent progress in tissue engineering and local therapeutic gene delivery systems has led to promising new strategies for successful regeneration of hyaline cartilage. In the present study, tissue engineering and local therapeutic gene delivery systems are combined with the ...
متن کاملKaryotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering.
Scaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors schedul...
متن کاملBiodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering.
A technique for producing controlled interconnected porous structures for application as a tissue engineering scaffold is presented in this article. The technique is based on the fabrication of a template of interconnected poly(ethyl methacrylate) (PEMA) microspheres, the introduction of a biodegradable polymer, poly-epsilon-caprolactone (PCL), and the elimination of the template by a selective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 85 4 شماره
صفحات -
تاریخ انتشار 2008